## Inflation and the Very Early Universe

Georges Obied University of Oxford

### Morning of Theoretical Physics 25 Feb. 2023





# Inflation and the Very Early Universe

### Georges Obied University of Oxford

### Morning of Theoretical Physics 25 Feb. 2023





## Motivation and Overview



## Motivation and Overview

- **Inflation:** a period of accelerated expansion in the early universe. 0
- It explains some puzzling observations about our universe





[Guth '87, Linde '87, Albrecht, Steinhardt '87]



## The Cosmic Microwave Background

How are 'far away' points on the CMB at the same temperature? There wasn't enough time to comminucate any signal between them!

see for e.g.: [Penzias, Wilson '65, COBE, WMAP, Planck]

### $- L \cdot / \Lambda$

### The question we want to answer is: How is the CMB so uniform?





## Outline

- The expanding universe
- The particle horizon
- The horizon problem
- The inflationary paradigm
- Quantum Perturbations (very briefly)
- Conclusion





## The expanding universe

• In Special Relativity, the 'interval' between two points is:

•  $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$ 



### • In cosmology, we describe an expanding universe using:

• 
$$ds^2 = -dt^2 + a(t)^2(dx^2 + dy^2 + dz)^2$$





## The expanding universe

- The evolution of a(t) is dictated by the contents of the universe.
- From Einstein's general relativity, we get the differential equation (called the first Friedmann equation):

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho(a)$$

where  $\rho(a)$  is the energy density and *H* is called the Hubble rate.





### Alexander Friedmann



## The expanding universe: matter

matter (i.e. massive particles at rest)

Let the density today be  $\rho_0$ 

Then the density at a different time with scale factor *a* is:

 $\rho(a) = \rho_0 \left(\frac{a_0}{a}\right)$ 



## Consider a box with side length equal to one coordinate unit filled with



## The expanding universe: radiation

particles like photons) Let the density today be  $\rho_0$ 

Then the density at a different time with scale factor *a* is:

$$\rho(a) = \rho_0 \left(\frac{a_0}{a}\right)^3 \left(\frac{a_0}{a}\right)$$
$$= \rho_0 \left(\frac{a_0}{a}\right)^4$$



## The expanding universe: Dark Energy

• For a box 'filled' with Dark Energy

Let the density today be  $\rho_0$ 

Then the density at a different time with scale factor *a* is:

$$\rho(a) = \rho_0 \left(\frac{a_0}{a}\right)^0 = \rho_0$$





## Our expanding universe

• In summary, we can write

$$\rho(a) = \rho_0 \left(\frac{a_0}{a}\right)$$

where *w* takes on different values for matter, radiation and dark energy:

$$w_{\rm m} = 0$$
 ;  $w_{\rm r} = \frac{1}{3}$ 

In our Universe, we have multiple components:

$$\rho_{\text{tot}}(a) = \rho_{\text{m},0} \left(\frac{a_0}{a}\right)^3 + \rho_{\text{r},0} \left(\frac{a_0}{a}\right)^4 + \rho_{\text{de},0}$$

3(1+w)

; 
$$w_{de} = -1$$





## Toy expanding universes

• Given  $\rho(a)$ , we can now get some intuition by solving the Friedmann equation with one component in the energy density:

$$\frac{\dot{a}(t)}{a(t)} = \sqrt{\frac{8\pi G}{3}}\rho_0 \left(\frac{a_0}{a(t)}\right)^{\frac{3}{2}(1+w)} =$$

$$\int \left(\frac{a}{a_0}\right)^{\frac{1}{2}(1+3w)} d\left(\frac{a}{a_0}\right) = \sqrt{\frac{8\pi G}{3}\rho_0}.$$

- $\implies a(t) \propto \begin{cases} t^{2/3} & \text{for matter} \\ t^{1/2} & \text{for radiation} \end{cases}$ 
  - $e^{Ht}$ for Dark Energy



## Our expanding universe

• In our universe, we have a combination of matter, radiation, and Dark Energy:

$$\rho_{\text{tot}} = \rho_{\text{m},0} \left(\frac{a_0}{a}\right)^3 + \rho_{\text{r},0} \left(\frac{a_0}{a}\right)^4 + \rho_{\text{de},0}$$

|      | 10 <sup>0</sup>  |          |
|------|------------------|----------|
|      | 10 <sup>-1</sup> |          |
|      | 10 <sup>-2</sup> |          |
| a(t) | 10 <sup>-3</sup> | -        |
|      | 10 <sup>-4</sup> | -        |
|      | 10 <sup>-5</sup> | -        |
|      | 10 <sup>-6</sup> | A ROAD A |
|      |                  |          |



- Our Universe
- Radiation -
- Matter -



## Our expanding universe

• In our universe, we have a combination of matter, radiation, and Dark Energy:

$$\rho_{\text{tot}} = \rho_{\text{m},0} \left(\frac{a_0}{a}\right)^3 + \rho_{\text{r},0} \left(\frac{a_0}{a}\right)^4 + \rho_{\text{de},0}$$

|      | 10 <sup>0</sup>  |          |
|------|------------------|----------|
|      | 10 <sup>-1</sup> |          |
|      | 10 <sup>-2</sup> |          |
| a(t) | 10 <sup>-3</sup> | -        |
|      | 10 <sup>-4</sup> | -        |
|      | 10 <sup>-5</sup> | -        |
|      | 10 <sup>-6</sup> | A ROAD A |
|      |                  |          |





## The expanding universe

In our universe, we have a combination of matter, radiation, and Dark Energy:

$$\rho_{\text{tot}} = \rho_{\text{m},0} \left(\frac{a_0}{a}\right)^3 + \rho_{\text{r},0} \left(\frac{a_0}{a}\right)^4 + \rho_{\text{de},0}$$

This is responsible for latetime cosmic acceleration but plays no role in the early universe Our Universe

10<sup>0</sup>

10<sup>-^</sup>

 $10^{-2}$ 

 $10^{-4}$ 

 $10^{-5}$ 

 $(t) a^{-3}$ 

- Radiation
- Matter

Late-time acceleration

 $a(t) \propto t^{2/3}$ 

 $a(t) \propto t^{1/2}$ 

$$10^{-6} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 10^{-6} t [Gyrs]$$



## The particle horizon

$$D(t_f) = a(t_f) \int_0^{t_f} \frac{cdt}{a(t)} = ca(t_f)$$

Multiply by scale factor to get physical Distance

Coordinate distance

 $w_{\rm r} = 1/3$ ).

• This means that D(a) is dominated by  $1/\dot{a}$  in the late universe.

### • Largest distance that light could have travelled in the age of the universe:

$$\int_{0}^{a(t_{f})} \frac{da}{a\dot{a}} \implies D(a) = ca \int_{0}^{a} \frac{d\tilde{a}}{\tilde{a}} \frac{1}{\dot{\tilde{a}}}$$

### • Notice that $1/\dot{a}$ is always increasing for 'normal' substances ( $w_m = 0$ or



## The horizon

$$D(a) = a \int_{0}^{a} \frac{d\tilde{a}}{\tilde{a}} \frac{1}{\tilde{a}}$$

 Since *à*<sup>-1</sup> is always increasing, the most important contributions to *D*(*a*) come from late times:

|                | r<br>t                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|----------------|------------------------|----------------------------------------|
|                | へ?<br>10 <sup>4</sup>  | -                                      |
| Distance [Mpc] | 10 <sup>2</sup>        | -                                      |
|                | 10 <sup>0</sup>        |                                        |
|                | 10 <sup>-2</sup>       | -                                      |
|                | 10 <sup>-4</sup>       | -                                      |
|                | 10 <sup>-6</sup><br>10 | -6                                     |



a

## The horizon

$$D(a) = a \int_{0}^{a} \frac{d\tilde{a}}{\tilde{a}} \frac{1}{\tilde{a}}$$

 Since *à*<sup>-1</sup> is always increasing, the most important contributions to *D*(*a*) come from late times:

|          | 4                       | 0/~0. |
|----------|-------------------------|-------|
|          | Λ?<br>10 <sup>4</sup> Γ |       |
|          | 10 <sup>2</sup>         |       |
| Mpc      | 10 <sup>0</sup>         |       |
| Distance | 10 <sup>-2</sup>        | ŗ     |
|          | 10 <sup>-4</sup>        |       |
|          | 10 <sup>-6</sup>        | -6    |



## The horizon problem

- At the time of last scattering the horizon size was about 0.3 Mpc 0
- Our (angular diameter) distance to the last scattering surface is about 0 13 Mpc
- The angle subtended by a causally connected patch is then:

$$\theta \approx \frac{0.3}{13}$$
 rad  $\approx 0.02$ 

• The number of causally disconnected patches on the CMB sky is then

$$N \approx \frac{4\pi}{0.023^2} \sim 240$$

3 rad

Earth

13 Mbc

Last scattering surface

000



• The Den Stadium which has about 20000 seats.







### • The Den Stadium which has about 20000 seats.





### Francesco



Andy

### Image Credit: Groundhopper Soccer Guides



• The Den Stadium which has about 20000 seats.







• The Den Stadium which has about 20000 seats.

Come on guys!

Image Credit: Groundhopper Soccer Guides







## Back to the CMB

- Yet they all chose to go to the same temperature T = 2.7K
- One should be suspicious that the Hot Big Bang model vastly underestimates the true size of the horizon
- In other words, we need to find a way to make sure that there are no causally disconnected patches in the CMB. This is what inflation does!

### According to the Hot Big Bang model, there are 20k causally disconnected patches (i.e. patches that haven't communicated at any time in the past).



## Inflationary solution

- cosmology that is very well constrained by data.
- from early times
- This happens if  $1/\dot{a}$  decreased in the past 0
- This happens in an accelerating  $\ddot{a} > 0$  universe!



• This means that the horizon is mostly what we would estimate from late time

• The horizon however can be much bigger if it received large contributions



## Inflationary solution







## What does this do to the horizon?



a

 $\dot{a}^{-1}$  without inflation D(a) without inflation  $\dot{a}^{-1}$  with inflation D(a) with inflation



## What does this do to the horizon?



Adding a period of acceleration expansion (inflation) in the early universe, we see that the horizon can be much bigger than what the Hot Big Bang predicts.



 $\mathcal{A}$ 

---- D(a) with inflation





- Recall that the ground state of the quantum simple harmonic oscillator (SHO) has a Gaussian wavefunction
- Even in the ground state, the SHO is not localized at one point and has fluctuations:
  - $\langle 0 | \hat{x}^2 | 0 \rangle \neq 0$
- So if we measure the position of the oscillating particle, we would typically get non-zero values.





-V(x)

— The wavefunction



In the simplest models of inflation, the energy density to drive the expansion is due to a scalar field:

$$\phi(t, \vec{x}) = \bar{\phi}(t) + \delta\phi(t, \vec{x})$$

• If we Fourier transform the position variable in the fluctuation to momentum space *k*, then each *k*-mode obeys an equation similar to that of the SHO:

$$\delta \phi_k'' + \omega(t,k)^2 \delta \phi_k =$$

• Just like the SHO, quantum mechanics implies that these k -modes  $\delta \phi_k(t)$  are typically non-zero when measured!



 $\vec{z}$ )/a(t)



### ()







## Conclusion

- into causal contact.
- As a bonus, inflation can also seed fluctuations that become the galaxies, planets and other structures we see around us.
- important open problem in theoretical and observational cosmology.

• We discussed a puzzle (called the horizon problem) that stems from observing a uniform CMB despite predictions of the standard Big Bang picture. The latter imply that the CMB is made up of thousands of causally disconnected patches.

• We saw that inflation can remedy this issue by allowing these patches to come

However, pinning down the microscopic realization of inflation remains an



Thank you for your attention!

