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Motivation and Overview

Inflation: a period of accelerated expansion in the early universe.

It explains some puzzling observations about our universe
[Guth ’87, Linde ’87, 

Albrecht, Steinhardt ’87]



The Cosmic Microwave Background

T = 2.7 K

How are ‘far away’ points on the
CMB at the same temperature?
There wasn’t enough time to 

comminucate any signal between them!

The question we want to answer is: How is the CMB so uniform?

see for e.g.:
[Penzias, Wilson ’65, 

COBE, WMAP, Planck]
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The expanding universe
In Special Relativity, the ‘interval’ 
between two points is:

ds2 = − dt2 + dx2 + dy2 + dz2

In cosmology, we describe an 
expanding universe using:

ds2 = − dt2+a(t)2(dx2 + dy2 + dz2)
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The expanding universe

The evolution of  is dictated by the contents of the 
universe.

From Einstein’s general relativity, we get the differential 
equation (called the first Friedmann equation) :

    where  is the energy density and  is called the
    Hubble rate.

a(t)

ρ(a) H

H2 = (
·a
a )

2

=
8πG

3
ρ(a)

Alexander Friedmann



The expanding universe: matter

Consider a box with side length equal to one coordinate unit filled with 
matter (i.e. massive particles at rest)

Let the density today be 

Then the density at a 
different time with scale 
factor  is:

ρ0

a

ρ(a) = ρ0 ( a0

a )
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The expanding universe: radiation

We have a similar story for a box filled with radiation (i.e. highly relativistic 
particles like photons)

a0 a

Let the density today be 

Then the density at a different 
time with scale factor  is:

ρ0

a

ρ(a) = ρ0 ( a0

a )
3

( a0
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= ρ0 ( a0

a )
4

Redshift factor: a0/a



The expanding universe: Dark Energy

For a box ‘filled’ with Dark Energy

a0 a

Let the density today be 

Then the density at a 
different time with scale 
factor  is:

ρ0

a

ρ(a) = ρ0 ( a0

a )
0

= ρ0

No dilution with the 
expansion!



Our expanding universe 

In summary, we can write

where  takes on different values for matter, radiation and dark energy:

 

In our Universe, we have multiple components:

w

wm = 0 ; wr =
1
3

; wde = − 1

ρtot(a) = ρm,0 ( a0

a )
3

+ ρr,0 ( a0

a )
4

+ ρde,0

ρ(a) = ρ0 ( a0

a )
3(1+w)



Toy expanding universes 

Given , we can now get some intuition by solving the Friedmann 
equation with one component in the energy density:

ρ(a)

·a(t)
a(t)

=
8πG

3
ρ0 ( a0

a(t) )
3
2 (1+w)

⟹ ∫ ( a
a0 )

1
2 (1+3w)

d ( a
a0 ) =

8πG
3

ρ0 ∫ dt

⟹ a(t) ∝
t2/3 for matter
t1/2 for radiation
eHt for Dark Energy



Our expanding universe 
In our universe, we have a 
combination of matter, 
radiation, and Dark 
Energy:

 

ρtot = ρm,0 ( a0

a )
3

+

ρr,0 ( a0

a )
4

+ ρde,0
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Our expanding universe 
In our universe, we have a 
combination of matter, 
radiation, and Dark 
Energy:

 

ρtot = ρm,0 ( a0

a )
3

+

ρr,0 ( a0

a )
4

+ ρde,0
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The expanding universe 
In our universe, we have a 
combination of matter, 
radiation, and Dark 
Energy:

 

ρtot = ρm,0 ( a0

a )
3

+

ρr,0 ( a0

a )
4

+ ρde,0
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This is responsible for late-
time cosmic 

acceleration but plays no 
role in the early universe

a(t) ∝ t1/2

a(t) ∝ t2/3

Late-time acceleration



The particle horizon

Largest distance that light could have travelled in the age of the universe:

 

Notice that  is always increasing for ‘normal’ substances (  or 
).

This means that  is dominated by  in the late universe.

D(tf) = a(tf) ∫
tf

0

cdt
a(t)

= ca(tf)∫
a(tf)

0
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physical Distance



The horizon

 

Since  is always 
increasing, the most 
important contributions 
to  come from late 
times:

D(a) = a∫
a

0

dã
ã

1
·̃a

·a−1

D(a)
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The horizon
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Last scattering

The horizon size 
at last scattering

 

Since  is always 
increasing, the most 
important contributions 
to  come from late 
times:

D(a) = a∫
a

0

dã
ã

1
·̃a

·a−1

D(a)



The horizon problem

At the time of last scattering the horizon size was about 

Our (angular diameter) distance to the last scattering surface is about 

The angle subtended by a causally connected patch is then:

 

The number of causally disconnected patches on the CMB sky is then

0.3 Mpc

13 Mpc

θ ≈
0.3
13

rad ≈ 0.023 rad

N ≈
4π

0.0232
∼ 24000

0.3 Mpc

13
 M

pc

Last scattering
surfaceEarth
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Football match analogy

The Den Stadium 
which has about 
20000 seats. 

Image Credit: 
Groundhopper Soccer Guides



Football match analogy

The Den Stadium 
which has about 
20000 seats. 

Francesco Andy

Image Credit: 
Groundhopper Soccer Guides



Football match analogy

The Den Stadium 
which has about 
20000 seats. 
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Groundhopper Soccer Guides



Football match analogy

The Den Stadium 
which has about 
20000 seats. 

Come on guys!

Image Credit: 
Groundhopper Soccer Guides



Back to the CMB

T = 2.7 K



Back to the CMB

According to the Hot Big Bang model, there are 20k causally disconnected 
patches (i.e. patches that haven’t communicated at any time in the past).

Yet they all chose to go to the same temperature T = 2.7K

One should be suspicious that the Hot Big Bang 
model vastly underestimates the true size of 
the horizon

In other words, we need to find a way to make 
sure that there are no causally disconnected 
patches in the CMB. This is what inflation does!



Inflationary solution

The problem is that the horizon receives largest contributions from late times. 

This means that the horizon is mostly what we would estimate from late time 
cosmology that is very well constrained by data.

The horizon however can be much bigger if it received large contributions 
from early times

This happens if  decreased in the past

This happens in an accelerating  universe!

1/ ·a

··a > 0



Inflationary solution
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Inflationary solution
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What does this do to the horizon?
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What does this do to the horizon?

10-65 10-55 10-45 10-35 10-25 10-15 10-5
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Adding a period of acceleration expansion (inflation) in the early universe, we 
see that the horizon can be much bigger than what the Hot Big Bang predicts.



Perturbations

ΔT/T ≈ 10−5

[Planck ‘18]



Perturbations

Recall that the ground state of the quantum simple 
harmonic oscillator (SHO) has a Gaussian 
wavefunction

Even in the ground state, the SHO is not localized at 
one point and has fluctuations:

So if we measure the position of the oscillating particle, 
we would typically get non-zero values. 

⟨0 | ̂x2 |0⟩ ≠ 0



Perturbations

In the simplest models of inflation, the energy density to drive 
the expansion is due to a scalar field: 

If we Fourier transform the position variable in the fluctuation 
to momentum space , then each -mode obeys an equation 
similar to that of the SHO:

 

Just like the SHO, quantum mechanics implies that these 
-modes  are typically non-zero when measured!

ϕ(t, ⃗x ) = ϕ̄(t) + δϕ(t, ⃗x )/a(t)

k k

δϕ′ ′ k + ω(t, k)2δϕk = 0

k
δϕk(t)



Perturbations
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Spatial directions



Perturbations

ΔT/T ≈ 10−5



Conclusion
We discussed a puzzle (called the horizon problem) that stems from observing 
a uniform CMB despite predictions of the standard Big Bang picture. The latter 
imply that the CMB is made up of thousands of causally disconnected patches.

We saw that inflation can remedy this issue by allowing these patches to come 
into causal contact.

As a bonus, inflation can also seed fluctuations that become the galaxies, 
planets and other structures we see around us.

However, pinning down the microscopic realization of inflation remains an 
important open problem in theoretical and observational cosmology. 



Thank you for your attention!


